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Introduction

• In his seminal 1948 paper "The Mathematical Theory of Communica-

tion", Claude E. Shannon derived the "channel coding theorem"

._ which gave an explicit upper bound, called the channel capac-

ity, on the rate at which "information" could be transmitted

- reliably on a given communication channel.

• Shannon's result was an existence theorem and did not give spe-

cific codes to achieve the bound. Some skeptics have claimed

- that the dramatic performance improvements predicted by Shan-

non are not achievable in practice.

• The advances made in the area of coded modulation in the past

decade have made communications engineers optimistic about

the possibility of achieving or at least coming close to channel

capacity. Here we consider this possibility in the light of current

research results.



Channel Capacity

With respect to coding and coded modulation, the most relevant

of Shannon's results is the "noisy channel coding theorem for

- continuous channels with average power limitations."

; This theorem states that for any transmission rate R less than

or equal to the channel capacity, C, there exists a coding scheme

_ that achieves an arbitrarily small probability of error!

, Conversely, if R is greater than C, no coding scheme can achieve

- reliable communication, regardless of complexity.

Shannon then shows that the capacity, C, of a continuous addi-

tive white Gaussian noise (AWGN) channel with bandwidth B

- and assuming Nyquist signaling is given by

C= B log2 (l + _o) bits/sec , (1)

- where E_ is the average signal energy in each signaling interval

T and No/2 is the two sided noise power spectral density.

This bound represents the absolute best performance possible

- for a communication system on the AWGN channel.



m Restatement of the Capacity Bound

-_ Shannon's capacity bound can be put in a form more useful for

the present discussion by introducing the parameter W, called

"- spectral efficiency, to represent the average number of informa-

tion bits transmitted per signaling interval.
m

-From Shannon's bound, it follows that

0 <_ R <_ C bits/sec,

- and hence

0 < _7<__C/B bits�signal.

, Substituting the relation

E /Yo = vEb/Yo,

where Eb is the average energy per information bit, into equation

(1) and performing some minor manipulations yields

2_ - i
Eb/No >_ , (2)

which relates the spectral efficiency, W, to the

ratio (SNR), Eb/No.

signal-to-noise

"_ The bound of equation (2) manifests the fundamental tradeoff

between spectral efficiency and SNR. That is, increased spectral

efficiency can be reliably achieved only with a corresponding

increase in SNR.



Interpretation of the Capacity Curve
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, Shannon's bound gives the minimum signal-to-noise ratio (SNR)

required to achieve a specific bandwidth efficiency with an at-

- bitrarily small probability of error.

-o Example: With _ = 2 information bits per channel signal, there

exists a coding scheme that operates reliably with an SNR of

- 1.76dB.

-, Conversely, any coding scheme sending _7 = 2 information bits

per signal with an SNR less than 1.76dB will be unreliable, regard-

- less of complexity.
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Interpretation of the Capacity Curve
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• Alternatively, Shannon's bound gives the maximum achievable

spectral efficiency for a specific signal-to-noise ratio (SNR).

• Example: With an SNR of Eb/No = 1.76db, there exists a coding

scheme cabable of transmitting reliably with a spectral efficiency

of rl = 2 bits per signal.

• Conversely, any coding scheme operating with an SNR of Eb/No =

1-.76dB and attempting to transmit more than 77 = 2 bits per signal

will be unrealiable regardless of complexity.
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NASA (2,1,6) Convolutional Code

. Historically,

below capacity.

• Ezample: The NASA standard rate (2,1,6) convolutional code

with QPSK modulation achieves a spectral efficiency of rl = 1

bit/signal and requires a signal-to-noise ratio (SNR) of Eb/No =

4.15 dB to achieve error free (10 -5 bit error rate) communication.

k_

B

i

• An ideal system operating with the same Eb/No = 4.15dB can

achieve error free communication with a spectral efficiency as

high as _7= C = 3.235 bits per signal.

OR

An ideal system operating with the same spectral efficiency of

rl = 1 bit per signal would require an SNR of only Eb/No = 0.0

dB.
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A New Optimal (2,1,14) Convolutional Code

O
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• A computer search has found the optimum distance spectrum

(ODS) (2,1,14) convolutional code.

• This code has optimum minimum free Hamming distance, d/ree =

18, and the smallest number of nearest neighbors, N/_ee = 26, of

any constraint length 15 code.

• The performance of this code is 1.65 dB better than the (2,1,6)

code, but is still 2.5dB away from capacity.



Optimal (2,1,14) Convolutional Code
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_ • The new optimal (2,1,14) convolutional code requires a signal-

to-noise ratio (SNR) of EffNo = 2.5 dB to achieve error free (10 -5

- bit error rate) communication.

• An ideal system operating with the same Eb/No = 2.5dB can

achieve error free communication with a spectral efficiency as

high as _ = C = 2.4 bits per signal.

D

OR

An ideal system operating with the same spectral efficiency of

= 1 bit per signal would require an SNR of only EffNo = 0.0

dB.



Practical Bounds

N

• In real communication systems, there are many practical consid-

erations that take precedence over Shannon_s bound in design

decisions.

• For example, satellite communication systems that use nonlin-

ear travelling wave tube amplifiers (TWTA's) require constant

envelope signaling such as M-ary phase shift keying (MPSK).

• Thus, even if Shannon's results firmly stated that capacity at

_ a spectral efficiency of _ = 3 bits per signal can be achieved

with a (4,3,8) convolutional code using 16 QAM, it would not

_ be feasible to do so on the TWTA satellite link.

• It therefore seems reasonable to ask what is the minimum SNR

required to achieve reliable communication, given a particular

modulation scheme and a spectral efficiency, _7-

m



A Signal Specific Bound

- • For the discrete input, continuous output, memoryless AWGN

channel with M-ary one dimensional amplitude modulation (AM)

- or two dimensional (PSK, QAM) modulation and equiprobable

signaling, the capacity bound becomes

77*= log2 (M) E log 2 exp jai - ajl2
M _-0 j-0 _Vo , (3)

• Here

{_,j = 0,1, .M- _} (4)
is an M-ary modulations set, aj is a channel signal, n is a Gaus-

sian distributed noise random variable with mean 0 and variance

No/2, and E is the expectation operator.

_ • For a specified signaling method and spectral efficiency, this

bound can be used to compute the minimum SNR required to

:_ achieve reliable communication.

--=



Interpretation of the Signal Specific Bound
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- • To send 77= 1.5 information bits per signaling interval, an ideal

" system using QPSK modulation requires a minimum SNR of Eb/No ,_
- 1.64dB. This is 0.76 dB more than an ideal system without any

modulation constraints.

• To send 7/= 1.5 information bits per signaling interval, an ideal

- system using 8PSK modulation requires a minimum SNR of Eb/No ,_

1.22dB. This is 0.34 dB more than an ideal system without any

modulation constraints.
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Notes About the Graph

All results are with soft decision decoders.

1 NASA Codes: denoted by ×

Galileo: "['his is the concatenated code used on the Galileo probe.

(4,1,14) BPSK The is the (4,1,14) convolutional code developed by JPL.

Voyager: This is the concatenated code used on the Voyager probe.

(2,1,6) BPSK: This is the NASA standard (2,1,6) convolutional code with BPSK modu-

lation.

(2,1,6) QPSK: This is the NASA standard (2,1,6) convolutional code with QPSK modu-

lation.

!

2 Pietrobon-Costello Codes: denoted by (_

(6,5,4) 2x8PSK: This is a rate 5/6, 16 state, trellis code using 2x8PSK modulation with

Viterbi decoding. It has a spectral efficiency of r/= 2.5 bits/signal and is 45 ° rotation-

ally invariant. A Viterbi decoder for this code has been built by Steven Pietrobon and

tested at New Mexico State.

(9,8,6) 4x8PSK: This is a rate 8/9, 64 state, trellis code using 4x8PSK modulation with

Viterbi decoding. It has a spectral efficiency of 77= 2.0 bits/signal and is 45 ° rotation-

ally invariant.

(11,10,6) 4x8PSK: This is a rate 10/ll, 64 state, trellis code using 4x8PSK modulation

with Viterbi decoding. It has a spectral efficiency of 77 = 2.5 bits/signal and is 45 °

rotationally invariaat.

(7,6,6) 2xl6PSK: This is a rate 6/7, 64 state, trellis code using 2xl6PSK modulation

with Viterbi decoding. It has a spectral efficiency of 71 = 3.0 bits/signal and is 45 °

rotationally invariant.

(4,3,6) 16QAM, nonlinear: This is a nonlinear rate 3/4, 16 state, trellis code using

16QAM modulation with Viterbi decoding. It has a spectral efficiency of rj = 3.0

bits/signal and is 90 ° rotationally invariant.

3 Wang-Costello Codes: denoted by []

(3,2,17)SPSK: This is a rate

sequential decoding with

77= 2.0 bits/signal and is

2/3, memory 17, trellis code using 8PSK modulation and

a modified Fano algorithm. It has a spectral efficiency of

180 ° rotationally invariant.

(4,3,16) 16PSK: This a rate

sequential decoding with

= 3.0 bits/signal and is

3/4, memory 16, trellis code using 16PSK modulation and

a modified Fano algorithm. It has a spectral efficiency of

180 ° rotationally invariant.



(4,3,16) 16QAM: This is a rate 3/4, memory 16, trellis code using 16QAM modulation

and sequential decoding with a modified Fano algorithm. It has a spectral efficiency

of r/= 3.0 bits/signal and is 180 ° rotationally invariant.

m

4 Lin Codes: denoted by O

(32,16,8) RM: This is a rate 16/32=0.5, 64 state Reed-Muller code using BPSK modula-

tion and Viterbi decoding.

(64,42,8) RM: This is a rate 42/64=0.656, 1024 state Reed-Muller code using BPSK mod-

ulation and Viterbi decoding.

(17,16,2) 7x8PSK, TBCM: This is rate 16/17, 4 state, block coded modulation scheme

using 7x8PSK modulation with Viterbi decoding. It has a spectral efficiency of r/=

2.286 bits/signal and is 180 ° rotationaily invariant.

(18,16,6) 8xSPSK, TBCM: This is a 2-level trellis code using 8x8PSK modulation. The
first level has 64 states and is decoded with a Viterbi decoder. The second level has

8 states and is deocded with a Viterbi decoder. It has a spectral efficiency of r/- 2.0

bits/symbol and is 180 ° rotationally invariant.

(3069,2799) 16x8PSK, PBCM: This is a 3x3 product block coded modulation scheme.

The horizontal codes are BCH codes and the vertical code is a 3-level block code. It is

decoded using suboptimal multi-stage decoding. It has a spectral efficiency of r/= 2.1

bits/signal and is 45 ° rotationally invariant.

5 Viterbi Pragmatic Code: denoted by •

(3,2,6) 8PSK, Pragmatic: This is a rate 2/3, 64 state, trellis code using 8PSK modulation

and Viterbi decoding. It uses the NASA standard (2,1,6) convolutional code as its basis

and is suboptimal. It can be decoded using essentially the same Viterbi decoding chip
that is used to decode the NASA standard convolutional code.
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Notes About the Graph

All results axe with soft decision decoders.

1 Uncoded Systems: denoted by x

16QAM: Performance of uncoded 16QAM with a spectral efficiency of 7/= 4 bits/symbol

from simulation results.

32QAM: Performance of uncoded 32QAM with a spectral efficiency of rI = 5 bits/symbol

from simulation results.

64QAM: Performance of uncoded 64QAM with a spectral efficiency of T/= 6 bits/symbol

from simulation results.

128QAM: Performance of uncoded 128QAM with a spectral efficiency of 7/= 7 bits/symbol

from simulation results.

m

2

Wei

Wei

Wei Codes: denoted by O

4D, 8 state: This is Wei's 8 state code using a 4-dimensional constellation(of any

size).Performance taken from _Coset Codes - Part I: Introduction and Geometrical

Classification,"by G. David Forney. The performance was estimated taking into ac-

count the minimum squared Euclidean distance and the number of nearest neighbors.

Thus, thispoint shows effectivecoding gain at a bit-error-rate(BER) of 10-s.

4D, 16 state: This is Wei's 16 state code using a 4-dimensional constellation (of any

size). Performance taken from "Coset Codes - Part 1: Introduction and Geometrical

Classification," by G. David Forney. The performance was estimated taking into ac-

count the minimum squared Euclidean distance and the number of nearest neighbors.

Thus, this point shows effective coding gain at a bit-error-rate (BER) of 10 -s.

This code with a 2x192QAM constellation is being considered by CCITT for the
V.FAST ultimate modem standard.



r

b

hi



- 7
m

N94-16508

A Simulation Study of the Performance of

the NASA (2,1,6) Convolutional Code on

RFI/Burst Channels *

Lance C. Perez

Daniel J. Costello, Jr.

Department of Electrical Engineering

University of Notre Dame

Notre Dame, Indiana 46556

October 14, 1993

m

w

m

"Thiswork was supportedby NASA GrantsNAG5-557 and NGT-70109.



m

1 Introduction

In an earlier report [1], the LINKABIT Corporation studied the perfor-

mance of the (2,1,6) convolutional code on the radio frequency interference

(RFI)/burst channel using analytical methods. Using an tt0 analysis, the

report concluded that channel interleaving was essential to achieving reliable

performance. In this report, Monte Carlo simulation techniques are used to

study the performance of the (2,1,6) convolutional code on the RFI/burst

channel in more depth.

The basic system model under consideration is shown in Figure 1. The

(2,1,6) convolutional code is the NASA standard code with generators

gi = I + D2 + D3 + DS + D 6

g2 = I + D + D2 + D3 + D 6

and dfre,- i0. The channel interleaverisof the convolutional or periodic

type firstdescribed in [2].The binary output of the channel interleaveris

transmitted across the channel using binary phase shift keying (BPSK) mod-

ulation. The transmitted symbols are corrupted by an RFI/burst channel

consisting of a combination of additive white Ganssian noise (AWGN) and

RFI pulses. At the receiver, a soft-decision Viterbi decoder with no quan-

tization and variable truncation length is used to decode the deinterleaved

sequence.

m

==

2 RFI Channel Models

The R.FI/burst channel takes on a variety of forms depending on the char-

acteristics of the RFI pulse and the steps taken to combat it. In this report,

the two models described in [1] are used. These models represent the two

extremes of the RFI/burst channel.

In the first model, the RFI pulse is assumed to saturate the satellite's

transponder to the extent that BPSK symbols at the output of the channel

occur with equal probability during the RFI pulse. Thus, the channel output

is independent of the channel input during the RFI pulse. This type of

RFI can be modeled as a binary symmetric channel (BSC) with crossover

probability of 1/2. When an RFI pulse is present, the overall channel is

then a cascade of the BSC and the AWGN channel. This channel is called



w

w

w

m

the RFI/burst saturation channel and represents the worst case RFI/burst

channel. It is shown in block diagram form in Figure 2. When an RFI pulse

is not present, the channel is simply an AWGN channel.

In the second model, it is assumed that RFI pulses can be detected and

the satellite saturation then prevented or blanked. In this case, the RFI can

be modeled as a binary erasure channel (BEC) with an erasure probability

of 1. When an RFI pulse is present, the overall channel is then a cascade

of the BEC and the AWGN channel. This channel is called the RFI/burst

blank channel and represents the best case of the RFI/burst channel. It is

shown in block diagram form in Figure 3. When an RFI pulse is not present,

the channel is simply an AWGN channel.

3 Simulation Results

For the simulations performed in this study, the channel interleaver and

RFI/burst channels were not simulated directly. Instead, empirical data ob-
talned from NASA was used to model the combined convolutional interleaver

and channel. This was done in order to address specific questions concerning

the performance of the system shown in Figure 1. It is a simple matter to
simulate the interleaver and channel in a more direct manner.

The empirical data showed that an RFI pulse with a length of approxi-

mately 240 consecutive channel symbols resulted in 1 in 15 symbols out of

the convolutional deinterleaver being corrupted by the RFI channel. Simi-

larly, an RFI pulse with a length of approximately 360 consecutive channel

symbols resulted in 1 in 10 symbols out of the convolutional deinterleaver be-

ing corrupted by the RFI channel. Using these observations, the interleaver,

RFI/burst channel, and deinteleaver were combined into a single superchan-

nel consisting of an AWGN channel in cascade with a periodic RFI/burst

channel. Thus, to simulate the 240 symbol and 360 symbol RFI pulses the

period of the superchannel was set to 15 and 10, respectively. The RFI/burst

saturation model and the RFI/burst blank model were both used as the pe-

riodic RFI/burst channel.

Figure 4 shows the simulated bit error rate (BER) performance of the

(2,1,6) convolutional code on the RFI/burst blank, superchannel compared

to simulation results of the (2,1,6) code on a pure AWGN channel. Decoder

truncation lengths of r = 30 branches and r = 26 branches were considered.



The RFI/burst superchannelwith a period of 15 symbols resulted in a loss
of _ 0.5dB at a BER of 10-s comparedto the AWGN results. A period of
10 symbols resulted in a lossof _ 0.8dB at a BER of 10-s. Changing the
truncation length had virtually no consequenceson the performanceof the
(2,1,6) codeon the RFI/burst blank channel relative to the performance on

the AWGN channel.

If the (2,1,6) code and the system of Figure 1 are to be used in a con-

catenated system, the SER performance out of the inner docoder is more

significant than the BER. Figure 5 shows the simulated 8-bit symbol error

rate (SER) performance of the (2,1,6) code under the same channel condi-

tions that were used in Figure 4. Eight bit symbols were used in order to be

compatible with the standard (255,223) Reed-Solomon outer code. The SER

performance of the (2,1,6) code degrades in the same manner as the BER.

Figure 6 shows the simulated bit error rate (BER) performance of the

(2,1,6) code on the RFI/burst saturation superchannel compared to simu-

lation results of the (2,1,6) code on a pure AWGN channel. As expected,

the saturation channel is much more destructive than the blanking channel.

With a decod, r truncation length of r = 30, a period of 15 symbols resulted

in a loss of _ 3.7dB at a BER of 10 -s. However, with a decoder trunca-

tion length of r = 26, a period of 15 symbols resulted in a loss of _ 4.4dB.

The effect of the decoder truncation length was even more significant on the

RFI/burst saturation channel when the period was 10 symbols. In this case,
there was a loss of _ 6.2dB with r = 30 and a loss of _ 8.2dB with r = 26.

Thus, reducing the truncation length caused a performance loss of 2.0dB!

In Figure 7 the 8-bit SER. performance is shown under the same channel

conditions that were used in Figure 6. The SER performance degrades in

the same manner as the BER. In particular, the truncation length has a

significant effect on performance.

4 Conclusions

The simulation results in this report are consistent with the analytical results

in [1]. The RFI/burst channel is significantly worse than a pure AWGN

channel. It is also clear that the ability to detect and blank RFI pulses

greatly enhances performance.

It is unclear at this point why the performance of the (2,1,6) code on

4



v

the RFI/burst saturation is so sensitive to the decoder truncation length.

Simulation results for the AWGN channel, shown in Figure 8, demonstrate

that the performance of the (2,1,6) code is fairly robust even with a truncation

lenth of r = 24. When the truncation length is reduced to r = 18, the

performance is reduced considerably, but still does not exhibit the divergent

behavior evident on the RFI/burst saturation channel. The cause of this

phenomenon is currently being investigated.
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Introduction

w

• In order to communicate reliably and to reduce the required

:transmitter power, NASA uses coded communication systems

o_on most of their deep space satellites and probes (e.g. Pioneer,

-Voyager, Galileo, and the TDRSS network).

_:These communication systems use binary convolutional codes.

Better codes make the system more reliable and require less

_transmitter power.

_ However, there are no good construction techniques for convo-

-lutional codes. Thus, to find good convolutional codes requires

an exhaustive search over the ensemble of all possible codes.

In this paper, an efficient convolutional code search algorithm

-was implemented on an IBM RS6000 Model 580. The combi-

nation of algorithm efficiency and computational power enabled

-us to find, for the first time, the optimal rate 1/2, memory 14,

: convolutional code.

w



3igital Transmission Over a Noisy Channel

QvJC_N

CL._NNEL.

m

• When binary digital data is transmitted over a real channel, it

_ is subject to noise (we will assume Additive White Gaussian

Noise). The noise can cause errors to occur at the receiver.

The acceptable bit-error-rate (BER) at the receiver depends on

_i the type of data being transmitted. For example, video signals

are more forgiving of errors than computer data.

One of the goals of forward error correction (FEC) coding, is to

allow the receiver to correct errors caused by the channel and

- thus to increase the reliability of the system and/or reduce the

_' required signal energy.

v



Example (Binary Numbers)

f
0 I

"sTo transmit a 5 in binary, the codeword I01 would be sent. This

sequence of transmitted bits is then subject to channel noi_

If the channel noise is large enough relative to the transmitted

signal energy (per bit), the receiver may interpret a transmitted

i as a O, or vice-versa.

verted into another codeword, 111.

_ The probability that a 1 is received as a 0 and vice versa is

called the channel transitiorr probability, p, and is a flmction of

- the signal-to-noise ratio (SNR),

Es
- SNR =

No

- where Es is the average transmitted signal energy per bit and

No is the one sided noise spectral density (a measure of the noise

- power).

- For example, an optimum receiver would interpret the.received

- signal shown above as 111 or 8. In this case, the receiver makes

one error which in turn causes one codeword, 101, to" be con-
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Example (cont.)

, Given a channel transition probability of p, the probability that

-101 istransmitted and 111 is received is given by

P101,111= P1 = (1 - p)2p

This probability can be reduced by increasing the SNR which

-in turn causes a reduction in p.

.-In this example, one bit error causes one codeword to be con-

verted into another codeword. We say that this code has mini-

- mum free Hamming distance, of df - 1.

000 lOG

(D tO I tO

0 _ I I t I

In general, each codeword in this code may be converted into 3

different codewords by a single bit error with probabilitY:P1, 3

- different codewords by two bit errors with probability

I P2= (1- p)p2<

and one other codeword with three bit errors with probability

P3 = (1 - p)p2 < P2

- The overall probability of codeword error is

Pc = 3P1 + 3P2 + IP3

-which can be reduced by increasing the SNR.
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Geometric Interpretation and Hamming

Distance
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_-Intuitive insight into the error mechanism can be obtained using

_a geometric perspective.

c From this point of view, each codeword in the previous example

is considered a vector in a 3-.dimensional vector spac_ T.he
distance between two vectors Is the Hamming Distance, d_, which

=-is just the number of positions in which two vectors differ.

The probability that a codeword is converted into another code-

word at a Hamming distance of d is

= (1 - p)3-.p.

-Notice, that as the Hamming distance between two codewords

increases Pd decreases!

For a fixed SNR and thus a fixed channel transition probability,

p, the probability of a codeword error can be redllced by in-

creasing the Hamming distance between all pairs of codewords.



Example: P epetition Coding
• n

, __ .simple coding technique is known as repetition coding: I
_his scheme each bit is simply transmitted twice in succession.

j _ontinuing the previous example, repetition coding leads to the

ollowing set of codewords.

C, C:.C CCC

O0 t t 0,0

OC t I [ I

{IO.3CG

I I OG ll

I I II II

• The mininum free Hamming distance is now df = 2 and the

-overall probability of codeword error is

Fc = 3P2+ 31'4+ 1P6 < Pc,

_because each codeword has 3 codewords at distance 2, 3 code-

words at distance 4, and I codeword at distance 6.

,"The enumeration of the distances between one codeword and all

.other codewords in the code is called the code distance spectrum

and is usually depicted in the following way

d 23456

Nd30301



Coding Performance Tradeoffs

The probability of codeword error in digital communications

systems on the AWGN channel is determined primarily by three

-factors:

1. SNR,

2. df, the code's minimum distance, and

- 3. the coders distance spectrum.

_ Historically, due to the expense of putting large power supplies

in space and the relatively large amount of available bandwidth,

-NASA has chosen to improve system performance by using cod-

ing and expanding the required transmission bandwidth.
B

• With most of its satellites and deep space probes, NASA has

_chosen to use convolutional codes because of their superior per-

formance characteristics in this application.

m



Convolutional Codes

c A binary linear convolutional code with rate kin is a set of semi-

-infinite sequences generated by a finite state machine character-

_ized by three parameters:

1. k, the number of inputs bits per encoding interval,
w

2. n, the number of output bits per encoding interval,

-3. m, the memory order of the finite state machine.

The finite state machine has 2m states.

During each encoding interval, an (n,k,m) convolutional code
-encodes k information bits into n bits based on the current block

of k bits and the past m blocks of k bits.

• The minimum distance between codewords and thus the perfor-

-mance of a convolutional code increases as the rate decreases

and the memory increases.



A (2,1,2) Convolutional Code

M

© O

/

-_ A rate 1/2, convolutional code is specified by a pair of generators

denoted by (gl,g2) that describe the connections from the shift

- register to the output.

_ The (2,1,2) code shown above has generators

gl = 101 = 5

g2 = 010 = 2



Optimal Distance Spectrum Codes

• The maximum free distance of a (2,1,14) code is known to be

=_18. Many good codes have been found that have this free dis-

=tance. The goal of this research was to find the "best" rate 1/2,

-memory 14 convolutional code with free distance 18.

• -One way to do this is by finding the d!istance spectrum of every

possible code.

_Those codes with fewer paths at a given distance have a lower

_robability of error, and thus are considered better. If the num-

ber of paths are recorded for each code having a minimum free

--distance of 18, the list could then be sorted and the best code

Lfound.

.-'For example, the maximal free distance (2,1,14) code with gen-

_erators (gl,g2)=(56721,61713) has 33 paths of weight 18. If an-

other (2,1,14) code with fewer weight 18 paths could be found,
-this code would be a better code.

=
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A'he Problem with Finding Optimal Codes

• _Finding the optimal code would be easy if the all of the codes'

distance spectra could be evaluated and sorted in a reason-

__ble amount of time. However, there are 1,073,741,824 possible

codes of memory length 14.

e-Finding a single (2,1,14) code's distance spectrum is a compli-

cated process that takes approximately 30 CPU seconds on the

IBM RS6000 Model 580. At this rate, a search of every code

_would take roughly one millenia, not including the sort routine

to find the best code.

o-Thus, to make any search feasible, it is necessary to first pare

down the number of codes that must be tested by using other

-techniques for detecting inferior codes.

_In addition, all catastrophic codes must be eliminated before

attempting to find their distance spectrum. Catastrophic codes

are codes in which a finite weight information sequence can gen-

:erate an infinite weight codeword.
mm_

_This characteristic causes an infinite loop in the distance spec-

-trum algorithm; if not eliminated these codes would make the

search impossible.

• Unfortunately, an algorithm to recognize catastrophic codes is

-very complicated and time consuming because it involves fac-

toring.



I  ethods of Reducing the Number of Codes

q The number of codes can be reduced by making certain restric-

-tions regarding the structure of the codes. These restrictions

are based on known properties of convolutional codes and do

-not affect the search results in any way'.

, The two primary restrictions used were

_ 1. both generators must start with a 1, and

2. one generator must end with a 1.

"These restrictions reduce the number of codes by a factor of 8.

rSecond, an upper bound on the free distance can be utilized

to eliminate codes that cannot achieve the known maximal free

-distance. This bound uses the row distance function, which is a

decreasing function whose limit is the free distance.

4 For most codes, the row distance function converges quickly and

-is a very effective way of reducing the number of codes.

L Third, codes whose generators are mirror images of each other

can be eliminated, because they generate identical sets of code-

2words and thus identical distance spectrums.



Effectiveness of Schemes to Eliminate Codes

Initially, there are 1,073,741,824 possible codes and the search

-_ would have taken 1021 years.

_ After placing the two restrictions on the code generators, the

number is reduced to 134,217,728. This search would have re-

- quired 127 years.

The row distance evaluations, which require significant compu-

tational time, reduce the number of codes to a few hundred.
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The Optimal Distance Search • FAST

With a reduced list of generators, evaluating the distance spec-

- Given a set of generators, the FAST algorithm builds and searches

the code tree to determine the weight of all relevant code se-

-quences. Using column distance function bounds to limit and

speed the search, it ultimately returns the number of paths for

the ten lowest weights.

_ Efficient programming and compiler optimization resulted in a

CPU time of 30 seconds for the distance spectrum evaluation of

-one (2,1,14) code.

u

After using FAST to evaluate the candidate codes, the distance

spectrum results must be sorted.

-trum becomes feasible. This was done by implementing a ver-

sion of the FAST algorithm (A Fast Algorithm for Searching a

-Tree) published by Cedervall and Johannesson.



Search Results and Conclusions

.-The (2,1,14) code with generators (gl,g2) = (63057,44735) was

_-found to be the optimal distance spectrum code.

cThis code has only 26 weight 18 paths, as opposed to the pre-

-viously known best (2,1,14) code which has 33 weight 18 paths.

_hus, the new code is optimum for high signal-to-noise ratios.

• The new code is being simulated using computer models Notre

-Dame and a real decoder at the Jet Propulsion Laboratory in

LPasadena, California, to determine if it is the best code for
-moderate SNR's.

_The techniques used in this code search are being refined and

extended to find more complex codes for future NASA applica-

-tions.
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Optimal Rate 1/2, K = 15 (m - 14), Convolutional Codes

The rate 1/2, If = 15 (m=14) convolutional code found by Cedervall

and Johanneson [1] is the optimum distance spectrum (ODS) code. The

generators for this code are

g(1) = 63057=l+D+D 4+D s+D 9+D 11+D I_+D 13+D 14

g(2) = 44735=1+D 3+D 6+D 7+D s+D L°+D 11+D 12+D 14

and its distance spectrum is

d 18 19 20 21 22 23 24 25 26 27

Nd 26 0 165 0 845 0 4844 0 28513 0

The generators for the code in Lin and Costello [2] are

g(1) __ 56721 = 1 + D 2 + D 3 + D 4 + D s + D 7 + D s + D '° + D 14

g(2) _ 61713=l+D+D 5+D _+D _+D s+D 11+D 13+D 14

and its distance spectrum is

d 18 19 20 21 22 23 24 25 26 27

Nd 33 0 136 0 835 0 4787 0 27941 0

Both of these codes are invariant to 180 ° rotations of the QPSK signal

set.
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